pidgeons in it. east one pidgeon hole Pidgeon Hole Principle Examples $(1) \times n!)/n! = (n+2)(n+1)$ r 1 pidgeons (Q1) A bag contains 4 red counters, 2 yellow ×13)/(3×2×1) counters and 5 blue counters. What's the min $\frac{3!}{1} = \frac{14!}{12! \times 3!}$ # of counters that need to be drawn to ensure: (Q1a) 2 of the same counter? 1 + 1 + 2 = 4Mowing $7! - 2 \times 5!$ (Q1b) 3 of the same counter? 2 + 2 + 3 = 7 $= 5!(6 \times 7 - 2) = 40(5!)$ Ve (Q1c) 2 red counters? 2R + 2Y + 5B = 9aining 5 characters is to and D 0-9 and letters A-C. INCLUSION-EXCLUSION PRINCIPLE re possible with: ã e password: Inclusion-Exclusion Principle Rule 13!/8! = 154, 440 • Finding the elements in <u>union</u> of three sets: Same d in the password: Same $n(A \cup B \cup C) = n(A) + n(B) + n(C)$ 3⁵ = **371, 293** (a = l) $-n(A \cap B) - n(A \cap C) - n(B \cap C)$ + n(A \cap B \cap C) Vector A Vectors no MBINATIONS Divisibility Rules • The amount of numbers from 1 to a that are component Vectors can divisible by b is given by the floor function: r items from a Adding vector $[a/b] \bullet [x]$: integer less than/equal to x. r <u>does</u> matter). Inclusion-Exclusion Principle Examples ã (Q1) How many integers between 1 and 100 r)! inclusive are divisible by either 2, 3 or 5? $\tilde{r} = 0$ Let events A: \div by 2, B: \div by 3 and C: \div by 5. $-r+1)_{j}$ Triangle Rule Let events A: \div by 2, B: \div by 3 and C: \div by 5 $A = \left\lfloor \frac{100}{2} \right\rfloor = 50, B = \left\lfloor \frac{100}{3} \right\rfloor = 33, C = \left\lfloor \frac{100}{5} \right\rfloor = 20$ $A \cap B = \left\lfloor \frac{100}{2\times3} \right\rfloor = 16, A \cap C = \left\lfloor \frac{100}{2\times5} \right\rfloor = 10,$ $B \cap C = \left\lfloor \frac{100}{3\times5} \right\rfloor = 6, A \cap B \cap C = \left\lfloor \frac{100}{2\times3\times5} \right\rfloor = 3,$ $A \cap B \cup C = 50 \cup 22 \cup 20 \cup 16 \cup 100 \cup 23 \to 24$ Subtracting vector \tilde{b} , reverse vector \hat{a} ns from n $\overrightarrow{AB} = \widetilde{b} - \widetilde{a}$ natter). $A \cup B \cup C = 50 + 33 + 20 - 16 - 10 - 6 + 3 = 74$ AB: vector that (Q2) Find the value of x in the Venn Diagram goes from \tilde{a} to \tilde{b} . $\times r!$ below using the inclusion-exclusion principle: Add, subtract and scale $\binom{a}{b} \pm \binom{c}{d} = \binom{a \pm c}{b \pm d}$ 54 Equating principle • k: scalar multiplier (i.e. with union of sets: Vector Arithmetic Exam 20 + 15 + 28 - 8 (Q1) Let $\tilde{a} = (2, -1), \ \tilde{b} = (5, 2)$ -7-5+x=54-(Q1a) Determine the re- $\therefore 43 + x = 45. r$ $\tilde{a} + \tilde{c} = (2)$

ATAR Mathematics Specialist Units 1 & 2 Exam Notes for Western Australian Year 11 Students

Created by Anthony Bochrinis Version 3.0 (Updated 21/12/19)

ATAR Mathematics Specialist Units 1 & 2 Exam Notes

Created by Anthony Bochrinis

Version 3.0 (Updated 21/12/19) Copyright © ReviseOnline 2020

About the Author - Anthony Bochrinis

Hello! My name is Anthony and I graduated from high school in 2012, completed a Bachelor of Actuarial Science in 2015, completed my Graduate Diploma in Secondary Education in 2017 and am now a secondary mathematics teacher!

My original exam notes (created in 2013) were inspired by Severus Snape's copy of Advanced Potion Making in Harry Potter and the Half-Blood Prince; a textbook filled with annotations containing all of the pro tips and secrets to help gain a clearer understanding.

Thank you for being a part of my journey in realising that teaching is my lifelong vocation!

ATAR Revision. Created by Teachers and Trusted by Schools!

ReviseOnline will revolutionise the way you prepare for tests and exams. It will exceed all the revision materials that you have ever used.

No more revision manuals that clog up your desk space, no more outdated books and no more wasting time!

It is all here, in one easy to use program that generates topic tests and practice exams, with a click of a button. And, it goes wherever you go.

Thousands of combinations of tests and exams

Multiple choice answers marked for you

Monitors your progress Sets a time for each test and exam you start

Keep Up to Date with Revise Online!

To be kept in the loop with all the latest resource releases, updates, new, tips and more, be sure to follow us on our social media and bookmark our website!

Instagram @reviseonline

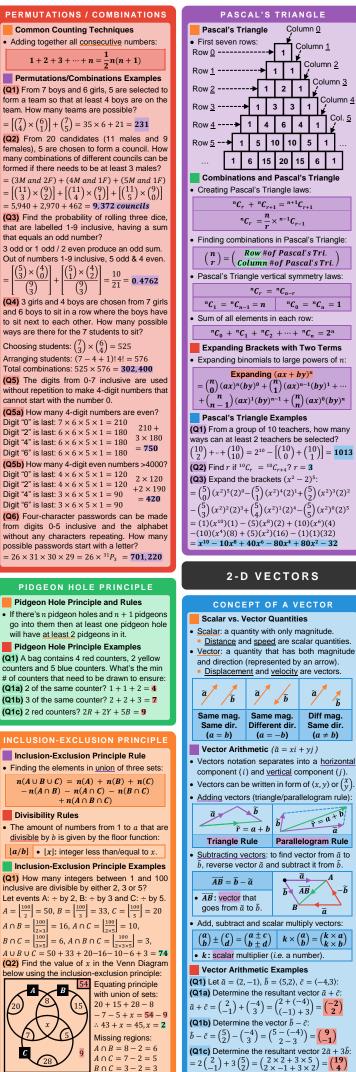
Facebook @reviseonlinewace

Website reviseonline.com

COMBINATORICS Common Counting Techniques PRINCIPLES OF COUNTING Multiplication Principle If there are A choices in one event and B choices in another event, then total choices: $n(Event) = n(A) \times n(B)$ team. How many teams are possible? Addition Principle $= \left[\binom{7}{4} \times \binom{6}{1}\right] + \binom{7}{5} = 35 \times 6 + 21 = 231$ If there are A and B disjoint events (i.e. they have no common outcomes) then the total number of outcomes for the event is: n(Event) = n(A) + n(B)ARRANGEMENTS = 5,940 + 2,970 + 462 = 9,372 councils Factorials (n!) The product of all positive integers less than or equal to a number n (e.g. $3! = 3 \times 2 \times 1$). that equals an odd number? n! pronounced "n factorial", for n > 0: $n! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1$ Exception to calculating factorials: Factorial rule exception: 0! = 1As there is 1 way to arrange 0 objects Line, Repeated & Circular Arrangements The number of ways to arrange *n* distinct objects in a line is given by the equation: ways are there for the 7 students to sit? Line Arrangement: n! Choosing students: $\binom{7}{3} \times \binom{6}{4} = 525$ The number of ways of arranging n objects Arranging students: (7 - 4 + 1)!4! = 576of which a of one type are alike, b of a second type are alike, c of a third type are alike etc: Find how many ways to arrange the word STATISTICS = 10!/(3! 2! 3!) = 50,400 cannot start with the number 0. Repeated n!Arrangement: $a! \times b! \times c! \times$ Digit "0" is last: $7 \times 6 \times 5 \times 1 = 210$ Digit "2" is last: $6 \times 6 \times 5 \times 1 = 180$ • The number of ways to arrange n distinct Digit "4" is last: $6 \times 6 \times 5 \times 1 = 180$ objects in a circle is given by the equation Digit "6" is last: $6 \times 6 \times 5 \times 1 = 180$ Circular Arrangement: (n-1)!If clockwise and anti-clockwise arrangements are the same: 0.5(n-1)!Digit "4" is last: $3 \times 6 \times 5 \times 1 = 90$ Cluster and Complement Arrangements Digit "6" is last: $3 \times 6 \times 5 \times 1 = 90$ Clustering refers to arrangements that require two or more objects to be together: E.g. Find the number of ways to arrange the letters in WORDS given W and O possible passwords start with a letter? must be together: $(5 - 2 + 1)! \times 2! = 48$ Cluster: $(n - r + 1)! \times r!$ Complement refers to arrangements that restricts two objects from being together: E.g. Find the number of ways to arrange Pidgeon Hole Principle and Rules the letters in WORDS given W and O must not be together: 5! - 2! 4! = 72Complement: $n! - 2! (n - 1)! \underline{or}$ will have at least 2 pidgeons in it. n(complement) = n(total) - n(together)Pidgeon Hole Principle Examples Arrangement/Factorial Examples (Q1) Simplify the expression (n+2)!/n! $= ((n+2) \times (n+1) \times n!)/n! = (n+2)(n+1)$ (Q2) Simplify $(14 \times 13)/(3 \times 2 \times 1)$ $\frac{14 \times 13}{3 \times 2 \times 1} = \frac{14!}{12!} \div \frac{3!}{1} = \frac{14!}{12! \times 3!}$ (Q1c) 2 red counters? 2R + 2Y + 5B = 9(Q3) Factorise the following $7! - 2 \times 5!$ $7 \times 6 \times 5! - 2 \times 5! = 5! (6 \times 7 - 2) = 40(5!)$ (Q4) A password containing 5 characters is to Inclusion-Exclusion Principle Rule be made from numbers 0-9 and letters A-C. How many passwords are possible with: (Q4a) No repetition in the password: $13 \times 12 \times 11 \times 10 \times 9 = 13!/8! = 154,440$ (Q4b) Repetition is allowed in the password: $13 \times 13 \times 13 \times 13 \times 13 = 13^5 = 371.293$ **Divisibility Rules** PERMUTATIONS / COMBINATIONS Permutations (Listing) Number of ways of picking r items from a collection of n items (i.e. order does matter). inclusive are divisible by either 2, 3 or 5? **n**! ${}^{n}P_{r} = n \, pick \, r = \frac{1}{(n-r)!}$ $= \lfloor n \times (n-1) \times (n-2) \dots \times (n-r+1) \rfloor$ r terms $A \cap B = \begin{bmatrix} 12 \\ 2\times3 \end{bmatrix} = 16, A \cap C = \begin{bmatrix} 100 \\ 2\times5 \end{bmatrix} = 10,$ $B \cap C = \begin{bmatrix} 100 \\ 3\times5 \end{bmatrix} = 6, A \cap B \cap C = \begin{bmatrix} 100 \\ 2\times3\times5 \end{bmatrix} = 3,$ **Combinations** (Grouping) Number of ways of choosing r items from n possible items (i.e. order does not matter). ${}^{n}\mathcal{C}_{r} = n \text{ choose } r = {n \choose r} = \frac{n!}{(n-r)! \times r!}$ Permutations vs. Combinations Permutations Combinations 20) Order does Order doesn't x matter (picking) matter (grouping)

Picking a principal

and vice principal

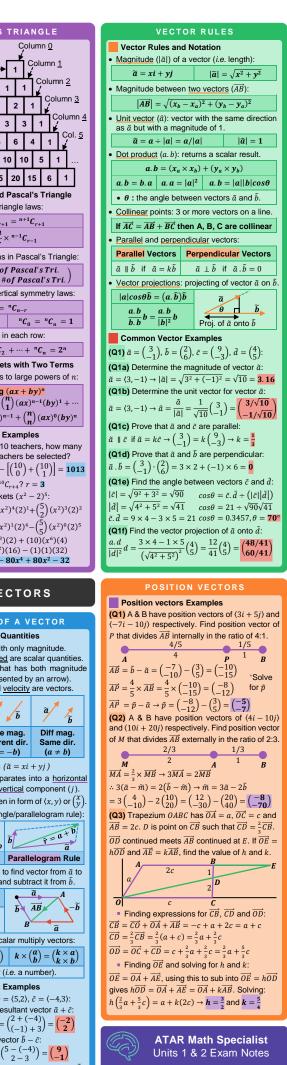

from 10 candidates.

Picking two school

leaders from 10

candidates

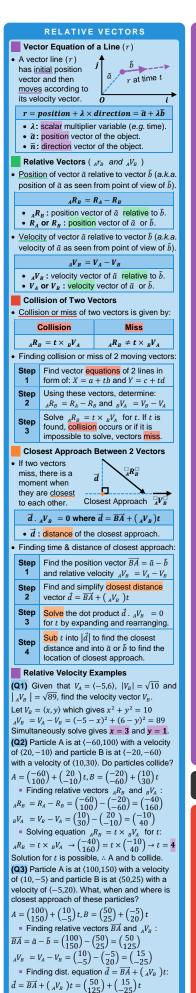
Topic Is Continued In Next Column


1

Ĩ ∕

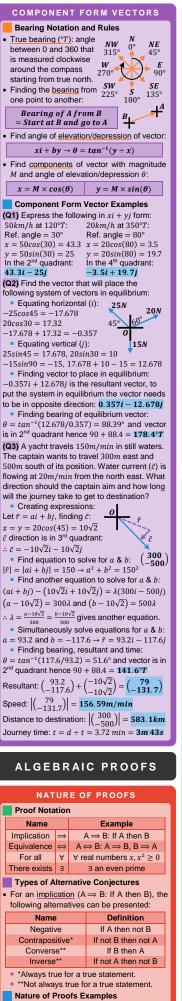
ã

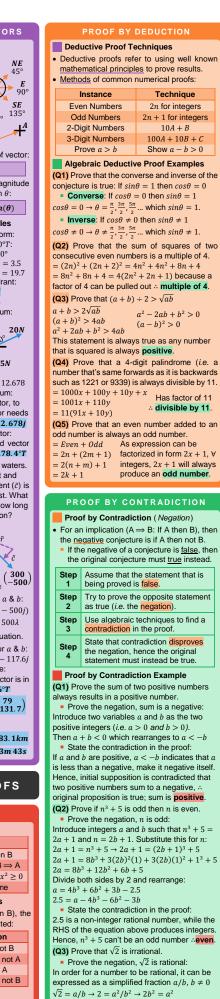
B


1

Copyright © **ReviseOnline** 2020 Created by **Anthony Bochrinis** More resources at **reviseonline.com**

Page: 1 / 4


Version: 3.0


■ Solving dot product $\vec{d} \cdot _{A}V_{B} = 0$ for t: $\vec{d} \cdot _{A}V_{B} = \begin{bmatrix} 50\\125 \end{bmatrix} + \begin{pmatrix} 15\\-25 \end{bmatrix} t \end{bmatrix} \cdot \begin{pmatrix} 15\\-25 \end{bmatrix} = 0$ Expanding gives: $\begin{pmatrix} 50\\125 - 25t \end{pmatrix} \cdot \begin{pmatrix} 15\\-25 \end{bmatrix} = 0$ $750 + 225t - 3125 + 625t = 0 \rightarrow t = 2.794$

• Finding distance $|\vec{d}|$ and location:

 $|\vec{a}| = \left| \begin{pmatrix} 50\\125 \end{pmatrix} + 2.794 \begin{pmatrix} 15\\-25 \end{pmatrix} \right| =$ **107.18** units Location (\vec{a}): $\begin{pmatrix} 100\\150 \end{pmatrix} + 2.794 \begin{pmatrix} 10\\-5 \end{pmatrix} = \begin{pmatrix} 127.94\\136.03 \end{pmatrix}$

Nature of Proofs Examples (Q1) Find a counterexample for the conjecture "doubling any number makes it larger"? Not true for negative numbers or zero. (Q2) Is the converse true for conjecture "if an animal is an ape then the animal is a mammal". Converse: if animal is mammal then it's an ape which is **not** true (*e.g.* deers are mammal).

Since $2b^2$ is even, a^2 is even and hence a

State the contradiction in the proof:

If a and b are even, a/b is not a simplified

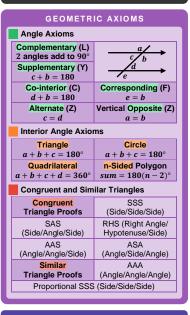
fraction which contradicts initial assumption.

Hence, $\sqrt{2}$ can't be expressed as a rational

fraction, $\therefore \sqrt{2}$ is an **irrational number**

If $2k^2$ is even, b^2 is even and hence b is even.

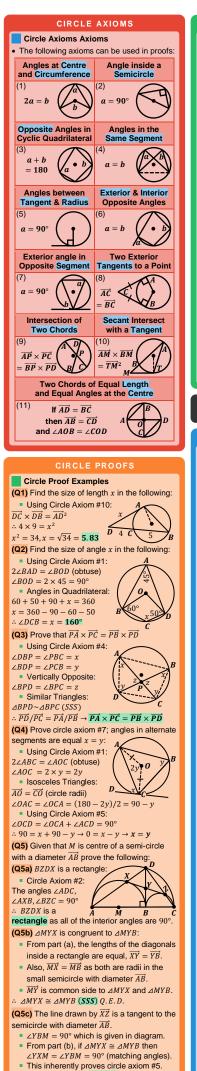
must be even as $even \times even = even$ Let $a = 2k \rightarrow 2b^2 = 4k^2 \rightarrow b^2 = 2k^2$


•	• Use notation <u>LHS</u> (left hand side) and <u>RHS</u> (right hand side) to equate expressions.						
StepVerify that the conjecture is true for the initial value of n by substitution							
	Step 2	Assume that the conjecture is true for the substitution $n = k$.					
	Step 3	Use algebraic techniques to show that the conjecture is also true for the substitution $n = k + 1$.					
	Step 4	Merge the results from steps 2 and 3 to prove conjecture inductively for all possible values of n .					
	Proc	f by Induction Examples					
		e mathematical induction to prove: $3 + 4 + 5 + \dots + n = \frac{n(n+1)}{2}$					
		fy that the statement is true for $n = 1$:					
L		$, RHS = (1 \times 2)/2 = 1, \therefore LHS = RHS$					
1		ume statement is true for $n = k$: $3 + 4 + 5 + \dots + k = \frac{k(k+1)}{2}$					
		w that statement is true for $n = k + 1$:					
1	(k+1)	$3 + 4 + 5 + \dots + (k + 1) = \frac{(k+1)((k+1)+1)}{2}$					
	2+(1	$(k+1) = \frac{(k+1)(k+2)}{2}$ *Sub from $n = k$					
L	HS = -	$\frac{k(k+1)}{2} + (k+1) = \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$					
	4	$\frac{2}{2(k+1)} = \frac{(k+1)(k+2)}{2}, LHS = RHS$					
		the tist frue \forall natural numbers $n, n \ge 1$ the mathematical induction to prove:					
		$B + \dots + (3n - 1) = \frac{n(3n+1)}{2}$ for $n \ge 1$					
	 Veri 	fy that the statement is true for $n = 1$:					
L		, $RHS = (1 \times 4)/2 = 2$, $\therefore LHS = RHS$					
• Assume statement is true for $n = k$: 2 + 5 + 8 + 11 + 14 + + (3k - 1) = $\frac{k(3k+1)}{2}$							
4		w that statement is true for $n = k + 1$:					
2	+ 5 + 3	$8 + \dots + (3(k+1) - 1) = \frac{(k+1)(3(k+1)+1)}{2}$					
k	$\frac{(3k+1)}{2}$ +($(3k+2) = \frac{(k+1)(3k+4)}{2}$					
L	$HS = \frac{k}{2}$	$\frac{(3k+1)}{2} + (3k+2) = \frac{k(3k+1)}{2} + \frac{2(3k+2)}{2}$					
=	$\frac{k(3k+1)}{k(3k+1)}$	$\frac{1}{2} + (3k+2) = \frac{1}{2} + \frac{1}{$					
		$\lim_{n \to \infty} 2 \max_{n=1}^{2} \frac{(k+1)(3k+4)}{2}, LHS = RHS$					
		nent is true \forall natural numbers $n, n \ge 1$					
(by $3^{2n} - 1$ is divisible by 8 for $n \ge 1$:					
3	Veri 2×1 – 1	fy that the statement is true for $n = 1$: = $3^2 - 1 = 9 - 1 = 8$ is divisible by 8.					
	Ass	ume statement is true for $n = k$:					
3	$k^{2k} - 1$ i	s also divisible by 8. We that attachment is true for $n = k + 1$:					
Show that statement is true for $n = k + 1$: $3^{2(k+1)} - 1$ *Reverse the multiplication							
	2k+2						
39	$x^{2} \times 3^{2k}$ × 3^{2k} -	-1 *Split $9m = 8m + 1m-1 *Use assumption for n = k as$					
8	$\times 3^{2k}$	$+\frac{3^{2k}-1}{2}$ a substitution for a multiple of					
$8 \times 3^{2k} + 8a$ some integer, <i>a</i> . $8(3^{2k} + a)$ is a multiple of 8 hence divisible by 8.							
∴ statement is true \forall natural numbers $n, n \ge 1$							
	GEOMETRIC PROOFS						

PROOF BY INDUCTION

Statement is true for all natural numbers by

showing that subsequent iterations succeed.


Proof by Induction

ATAR Math Specialist Units 1 & 2 Exam Notes

Copyright © **ReviseOnline** 2020 Created by **Anthony Bochrinis** More resources at **reviseonline.com**

Page: **2 / 4** Version: **3.0**

 $\overrightarrow{XZ} \perp \overrightarrow{AB} \rightarrow \overrightarrow{XZ}$ is a **tangent** to semi-circl

$(\overline{b} - \overline{a}) \cdot (\overline{a} + \overline{b}) = \overline{a} \cdot \overline{b} + \overline{b} \cdot \overline{b} - \overline{a} \cdot \overline{a} - \overline{a}$ $\overline{b} \cdot \overline{b} - \overline{a} \cdot \overline{a} = 0 \rightarrow \overline{b} \cdot \overline{b} = \overline{a} \cdot \overline{a} \rightarrow \overline{b} ^2 = \overline{a} $ $\therefore \overline{b} = \overline{a} , \therefore OABC \text{ is a rhombus.}$ $(\mathbf{Q2}) OABC \text{ is a trapezium with } \overline{OC} = 2$ lies on diagonal \overline{OB} so that $\overline{OM} = \frac{1}{3} \overline{OB}$ lies on diagonal \overline{CA} so that $\overline{CM} = \frac{1}{3} \overline{CA}$. that $ABNM$ is in fact a parallelogram. • Defining variables: Let $\overline{OA} = \overline{a}$ and $\overline{OB} = \overline{b}$							
nt	• Defining all sides: Find \overrightarrow{OM} : $\overrightarrow{OM} = \frac{1}{3}\overrightarrow{b}$ Find \overrightarrow{ON} : $\overrightarrow{ON} = \overrightarrow{OC} + \overrightarrow{CN}$						
	$\overrightarrow{ON} = 2\overrightarrow{AB} + \frac{1}{3}\overrightarrow{CA} = 2\overrightarrow{AB} + \frac{1}{3}(\overrightarrow{CO} + \overrightarrow{OA})$						
	$= 2\overline{b} - 2\overline{a} + \frac{1}{3}(2\overline{a} - 2\overline{b} + \overline{a}) = \frac{4}{3}\overline{b} - a$ Find $\overline{MN} = \overline{ON} - \overline{OM} = \frac{4}{3}\overline{b} - a - \frac{1}{3}\overline{b} = \overline{AB}$ Find $\overline{AM}: \overline{AM} = \frac{1}{3}\overline{b} - \overline{a}$ "Use $\overline{AB} = \overline{b} - \overline{a}$ Find $\overline{DN}: \overline{DO} = \overline{ON}$ is $\overline{ON} = \overline{C} + \frac{4}{3}\overline{C} = \frac{1}{3}\overline{c}$						
	Find $\overrightarrow{BN} = \overrightarrow{BO} + \overrightarrow{ON} = -\overrightarrow{b} + \frac{4}{3}\overrightarrow{b} - a = \frac{1}{3}\overrightarrow{b} - a$ • Constructing parallelogram proof:						
4)							
	opposite sides : <i>ABNM</i> is a parallelogram .						
D	TRIGONOMETRY						
	TRIGONOMETRIC FORMULAE						
	Exact Values of Trigonometric Ratios Deg. 0° 30° 45° 60° 90°						
	Rad. 0 $\pi/6$ $\pi/4$ $\pi/3$ $\pi/2$						
ng:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	Tan 0 $\sqrt{3}/3$ 1 $\sqrt{3}$ N/A						
Ув 🛛	Pos/Neg of Trigonometric Ratios Positive trig ratios: <u>All Stations To Central</u>						
g:	Quad. Q.1 Q.2 Q.3 Q.4 Unit Circle						
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	Tan + - + - 34						
	Range of Trigonometric Ratios						
<i>v</i>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
	Trigonometric Identities						
В	• Sum and difference identities: $sin(a \pm b) = sin(a) cos(b) \pm sin(b) cos(a)$						
<i>\$</i>)	$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$						
	$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a)\tan(b)}$ • Reciprocal identities:						
ate	cosec(x) = sec(x) = cot(x) =						
	$\frac{1}{sin(x)} \qquad \frac{1}{cos(x)} \qquad \frac{1}{tan(x)}$						
A^B	Pythagorean identities:						
/	$sin^{2} \theta + cos^{2} \theta = 1 \qquad 1 + tan^{2} \theta = sec^{2} \theta$ • Quotient identities:						
-	$\tan(x) = \frac{\sin(x)}{\cos(x)} \qquad \cot(x) = \frac{\cos(x)}{\sin(x)}$						
	<u>cos(x)</u> sin(x) <u>Co-function</u> identities:						
	$\sin\left(\frac{\pi}{2} - x\right) = \cos(x) \cos\left(\frac{\pi}{2} - x\right) = \sin(x)$						
	Parity identities (<i>i.e.</i> even and odd):						
	$\frac{\sin(-x) = -\sin(x)}{\tan(-x) = -\tan(x)} \frac{\cos(-x) = \cos(x)}{\sec(-x) = \sec(x)}$						
R)	 <u>Double angle</u> identities: 						
С 0°.	cos(2x) = cos2(x) - sin2(x) = 2 cos ² (x) - 1 = 1 - 2 sin ² (x)						
nals	$\frac{\sin(2x) = 2\sin(x)\cos(x)}{\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}}$						
	Combination angle identities:						
	$cosXcosY = \frac{1}{2}(cos(X - Y) + cos(X + Y))$						
'B.							
the	$\frac{sinXsinY = \frac{1}{2}(cos(X - Y) - cos(X + Y))}{sinXcosY = \frac{1}{2}(sin(X + Y) + sin(X - Y))}$						
	Power reducing identities:						
s).							
e.	$\frac{\frac{1-\cos(2x)}{2}}{2} \qquad \frac{\frac{1+\cos(2x)}{2}}{2}$						

VECTOR PROOFS

 \tilde{b}

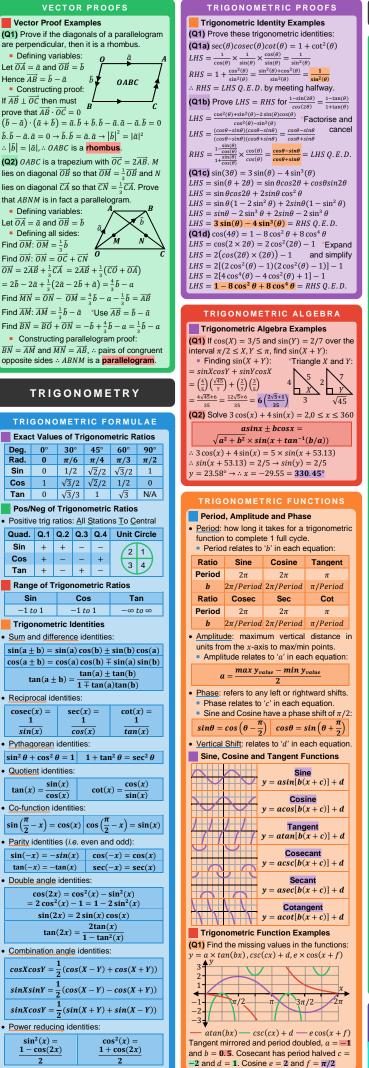
B

OABC

Vector Proof Examples

Defining variables:

Constructing proof:


Let $\overrightarrow{OA} = \widetilde{a}$ and $\overrightarrow{OB} = \widetilde{b}$

If $\overrightarrow{AB} \perp \overrightarrow{OC}$ then must

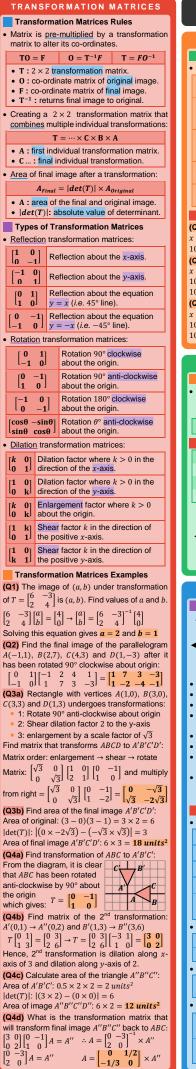
prove that $\overrightarrow{AB} \cdot \overrightarrow{OC} = 0$

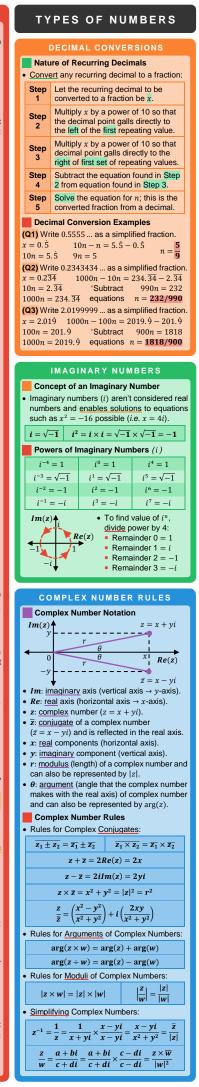
Hence $\overrightarrow{AB} = \widetilde{b} - \widetilde{a}$

are perpendicular, then it is a rhombus.

MATRICES

MATRIX FORMULAE							
Matrix Tern							
	e plural is matrices) is an <u>array</u> of numbers of a certain size.						
Matrix order/	size: the number of rows and						
	are in a matrix. ng a matrix, the number of rows						
	s first then number of columns.						
	$n \times m$ Matrix						
• m : numbe	r of <mark>rows</mark> in a matrix.						
• n : number	of <mark>columns</mark> in a matrix.						
	<u>nts/entries</u> (a_{ij}) : represents the						
	ow and j th column in matrix A.						
3 × 2 Ma	$atrix A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{22} \end{bmatrix}$						
	ypes of Matrices						
	Row Matrix: consists of only						
[1 4 1]	one row.						
[5]	Column Matrix: consists of						
	only one column. Square Matrix: a matrix of any						
$\begin{bmatrix} 2 & 6 \\ 5 & 3 \end{bmatrix}$	size with a condition that						
.5 51	# of rows = # of columns						
$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	Zero Matrix (0): a matrix of any						
	size with 0 as all entries. <u>Identity</u> Matrix (I_n) : square						
$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	matrix with all elements in the						
[1 0 0]	leading diagonal (goes from						
$I_3 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	top left to bottom right) as 1 and all other entries as 0.						
Matrix Arith	· · · · · · · · · · · · · · · · · · ·						
	ubtracting matrices: can only be						
possible if bo	th matrices have same size.						
$A+B=a_{ij}$	$+ b_{ij}$ $A - B = a_{ij} - b_{ij}$						
• $a_{ij} \pm b_{ij}$: a	dd/subtract matching entries.						
[a b]	$\begin{bmatrix} e & f \end{bmatrix} \begin{bmatrix} a \pm e & b \pm f \end{bmatrix}$						
	$\begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a \pm e & b \pm f \\ c \pm g & d \pm h \end{bmatrix}$						
 Scalar multiple 	ication: can use on any size.						
	$kA = ka_{ij}$						
	nultiplier (<i>i.e.</i> a number).						
	bly all entries in matrix by k.						
$k \times \begin{bmatrix} a & b \\ d & e \end{bmatrix}$							
-	atrices: multiply each element in						
row of 1 st ma	trix with matching element from						
	of 2 nd matrix and add.						
	$m \times n \& Matrix B = p \times q$ only possible if $n = p$						
Matrix	of size $m \times q$ is created						
■ E.g. 1: (1 ×	$3)(3 \times 1) = 1 \times 1 \text{ Matrix}$						
[a b c	$\left[X \begin{bmatrix} d \\ e \\ f \end{bmatrix} \right] = \left[ad + be + cf \right]$						
• E g 2' (1x	$[f] = \frac{1}{2} \times \frac{2}{2} \text{ Matrix}$						
[d e]	5)(5 × 2) = 1 × 2 Matrix						
$[a \ b \ c] \times \int g_{b \ i}$	= [ad + bf + ch ae + bg + cj]						
$\begin{bmatrix} a & b \end{bmatrix} \times \begin{bmatrix} e \end{bmatrix}$	$2)(2 \times 2) = \frac{2}{2} \times 2 \text{ Matrix}$ $\begin{cases} f \\ h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$						
	t and Inverse of a Matrix $(det(A) \text{ or } A) \text{ of } 2 \times 2 \text{ matrix is:}$						
	$] \rightarrow det(A) = A = ad - bc$						
Two types	of determinants based on value:						
$det(A) \neq 0$	Matrix A is non-singular and is						
	able to be inverted.						
det(A) = 0	Matrix A is singular and is not able to be inverted.						
 Inverse (A⁻¹) 	of 2×2 matrix is:						
$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	$\Big] \to A^{-1} = \frac{1}{det(A)} \begin{bmatrix} d & -b \\ -c & b \end{bmatrix}$						
Properties	of a matrix with its inverse:						
$AA^{-1} = I$							
and $A^{-1}A = 1$	If $AB = kI$ then $A^{-1} = \frac{1}{k}B$ and $B^{-1} = \frac{1}{k}A$						
Transpose	Matrices (A ^T)						
Transpose matrices are reflected in leading							
diagonal so that rows and columns swap:							
A is a $n \times m$ matrix $\rightarrow A^T$ is a $m \times n$ matrix							
$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \rightarrow A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$							
$A = \begin{bmatrix} 4 \end{bmatrix}_4$	$5 6 \xrightarrow{] \rightarrow A^{\circ}} = \begin{bmatrix} 2 & 5 \\ 3 & 6 \end{bmatrix}$						
ATAR Math Specialist							
ーマッ Lir	hits 1 & 2 Exam Notes						


Page: 3/4


Version: 3.0

Copyright © ReviseOnline 2020 Created by Anthony Bochrinis More resources at reviseonline.com

MATRIX ARITHMETIC					
Con		Matrix Arithmetic	ſ		
	B = B + A	k(AB) = A(kB)			
	$AA = A^2$	$AB \neq BA$			
IA	A = AI = A	0A = 0			
	$A(B \pm C)$	$(A \pm B)C$			
	$AB \pm AC$	$= AC \pm BC$			
	rix Arithmetic E	· ·	l		
r 5		g matrices, determine:	•		
$A = \begin{bmatrix} 3 \\ - \end{bmatrix}$	$\begin{bmatrix} 1 & 7 \end{bmatrix} B = \begin{bmatrix} -5 \\ 5 \end{bmatrix} C$	$C = \begin{bmatrix} 0 & 6 \\ 2 & 2 \end{bmatrix} D = \begin{bmatrix} 3 & 5 & 2 \\ 1 & 0 & 4 \end{bmatrix}$	1		
(Q1a) -	$\frac{2B}{2}$	(Q1b) $5a_{21} - c_{22} \times d_{12}$ (5 × -1) - 2 × 5 = -5 - 2 × 5 = -15			
(Q1c) A [5+0	+ C 1+6] [5 7]	(Q1d) BD impossible $(2 \times 1)(2 \times 3)$ is not	•		
l_{-1+2}	7+2] = [1 9]	(210) BD impossible $(2 \times 1)(2 \times 3)$ is not compatible (as $1 \neq 2$)			
produce	a 2 x 3 matrix) is compatible and will as the answer:			
$\begin{bmatrix} 5 & 1 \end{bmatrix}$	$\times \begin{bmatrix} 3 & 5 & 2 \\ 1 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 16 \\ 16 \end{bmatrix}$	$\begin{bmatrix} 25 & 14 \\ -5 & 26 \end{bmatrix}$ working out: $\begin{bmatrix} 5 & 5 \times 2 + 1 \times 4 \\ 5 & -1 \times 2 + 7 \times 4 \end{bmatrix}$			
$\begin{bmatrix} 1 \\ 5 \times 3 \end{bmatrix}$	$+1 \times 1$ 5 × 5	$5 5 \times 2 + 1 \times 4$			
l-1 × 3 (Q1e) A	$+7 \times 1$ $-1 \times$ ⁻¹ , the inverse of	$5 -1 \times 2 + 7 \times 4J$ of matrix A:	1		
		$\begin{bmatrix} -1\\5 \end{bmatrix} = \begin{bmatrix} 7/36 & -1/36\\1/36 & 5/36 \end{bmatrix}$			
		on making X the subject: Pre-multiply the inverse			
(A + 2I)	X = B	of brackets (A + 2I)			
	$(A + 2I)X = (A + 2I)^{-1}B$	$(A + 2I)^{-1}B$ *Simplify using rule $X^{-1}X = I$			
		Post-multiply inverse of			
X(A + B)	C = C	the brackets $(A + B)$			
	$(A + B)^{-1} = C$ $(A + B)^{-1}$				
(Q2c) X	$x^2 - 2X - 3I = 0$	Ensure alone numbers have I matrix			
XX - 2X	K = 3I *	Expand matrix $X^2 = XX$			
$\begin{array}{c} (X - 2I) \\ (X - 2I) \end{array}$	X = 3I $XX^{-1} = 3X^{-1}$	*Post-multiply			
X - 2I =	$= 3X^{-1}$	inverse of matrix X *Collect like terms on			
$X^{-1} = \frac{1}{3}$		ne side of the equation			
(Q3) So	lve the following	g for matrix X: 21			
$\begin{bmatrix} x \\ -3 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 4 \end{bmatrix} + X = \begin{bmatrix} 4 & -2 \\ 5 & -6 \end{bmatrix}$	5] [4 −2] ± ⊑ti			
$X(\begin{bmatrix} 1\\ -3 \end{bmatrix}$	$\begin{bmatrix} -1\\4 \end{bmatrix} + \begin{bmatrix} 1&0\\0&1 \end{bmatrix} =$	4 -2 5 -6 matrices			
$X \Big _{-3}^{2}$	$\begin{bmatrix} -1 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 5 & -6 \end{bmatrix} * 1$	Post-multiply inverse of			
$X = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$	$\begin{bmatrix} -2 \\ -6 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -3 & 5 \end{bmatrix}^{-1}$	simplified matrix *Simplify matrices			
$X = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$	$\begin{bmatrix} -2 \\ -2 \end{bmatrix} \times \begin{bmatrix} 1 \\ -5 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} =$	simplified matrix *Simplify matrices $\frac{1}{7}\begin{bmatrix} 14 & 0\\ 7 & -7 \end{bmatrix} = \begin{bmatrix} 2 & 0\\ 1 & -1 \end{bmatrix}$			
(Q4) Fir	-6J 7 13 2J nd the values of	$7 \lfloor 7 -7 \rfloor$ $\lfloor 1 -1 \rfloor$ a if X is singular:			
$\therefore (a + 1)$	$\begin{bmatrix} a+1 & a+1 \\ -1 & a-3 \end{bmatrix}$ singular means $det(X) = 0$ $\therefore (a+1)(a-3) - (-1)(a+1) = 0$				
	$(-3 + a + 1) = 0 \rightarrow a$		(0		
$(a-2)(a+1) = 0 \rightarrow a = 2$ or $a = -1$ (Q5) Given $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and assuming <i>B</i> is an					
	invertible 2 × 2 matrix, find X if $AXB + 2B = 0$				
		ion for matrix X:	[0 [2] S		
	$= 1 \times 3 - 2 \times 2$ arranging equation	= 1 ion for matrix X:	(0		
(AX + 2	$I)B = 0 \rightarrow AXB$	$= -2B \rightarrow AX = -2I$	A h		
$\therefore X = -$	$2IA^{-1} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$	$\binom{1}{2} \times \frac{1}{-1} \begin{bmatrix} 3 & -2 \\ -2 & 1 \end{bmatrix}$			
$X = \begin{bmatrix} -2\\ 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 \\ -2 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 2 & -1 \end{bmatrix}$	$=\begin{bmatrix} 6 & -4 \\ -4 & 2 \end{bmatrix}$	((
(Q6) Gi	ven A, B and C a	are non-singular square	ċ		
		show $A^2 = BC^2B^{-1}$ $B^{-1} = A^2I = A^2 = LHS$			
	_ 305 — ADUI	I = A = LII5			
SI	ULTANEOL	IS EQUATIONS	F		
		Solve Equations	N		
Step	-	th equations to be	IV		
1		form of $ax + by = c$	fr		
Star		atrix equation $AX = B$ 2×2 matrix of the	(
Step 2	coefficients, B	is 2 × 1 of solutions	A		
		matrix of variables.	0 0		
Step 3		atrix equation $AX = B$ nd solve for X.	((
		ations Examples	F th		
(Q1) Th	e equations 7y	= 6x + 4 and $5x = 3y$	a		
		e matrix form $AX = B$.	th w		
		matrices X and B: ns in form $ax + by = c$:	(0		
6x - 7y	= 4 and 5x - 3	y = 0	A		
		form of $AX = B$: = $\begin{bmatrix} x \\ B \end{bmatrix} = \begin{bmatrix} 4 \end{bmatrix}$			
	$\left \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix} \to X$		H		
y = -2x	x + 8 and $y = 2$		a ((
Rea	• Rearrange equations in form $ax + by = c$:				
2x + 1y = 8 and $-1x + 1y = 2• Create equation AX = B and solve:$					
AX = B	$AX = B \rightarrow \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 8 \end{bmatrix}$ *Rearrange				
$X = A^{-1}$	$x_{1} = x_{1}$ $\begin{bmatrix} x \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}^{-1} \begin{bmatrix} 8 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \end{bmatrix}$				
	$\begin{bmatrix} 6 \\ \end{bmatrix} = \begin{bmatrix} 2 \\ \end{bmatrix} \rightarrow \mathbf{r} =$				

 $X = \frac{1}{3} \begin{bmatrix} 6\\12 \end{bmatrix} = \begin{bmatrix} 2\\4 \end{bmatrix} \rightarrow \mathbf{x} = \mathbf{2}, \mathbf{y} = \mathbf{4}$

COMPLEX ROOTS Quadratic Formula Finds real and complex roots of a quadratic equation in the form of $y = ax^2 + bx + c$: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{4ac}$ 2a Finding Complex Roots Examples (Q1a) Find all the roots of $y = x^2 - 4x + 5$: Substituting a = 1, b = -4, c = 5: $\frac{-(-4)\pm\sqrt{(-4)^2-4(1)(5)}}{2(1)} = \frac{4\pm\sqrt{16-20}}{2}$ $\frac{4 \pm \sqrt{-4}}{2} = \frac{4 \pm \sqrt{4}\sqrt{-1}}{2} = \frac{4 \pm 2i}{2} = 2 \pm i$ 2 \therefore roots of the function is x = 2 + i, 2 - i(Q1b) Find the linear factorisation of equation: Using the null factor law: $= x^{2} - 4x + 5 = (x - (2 + i))(x - (2 - i))$ y = (x - 2 - i)(x - 2 + i)(Q1c) Describe the nature of these roots: Roots of the equation, $x = 2 \pm i$, are complex **conjugates** as Re(x) stays the same and the sign of Im(x) changes between \pm . COMPLEX ALGEBRA

Complex Number Algebra Examples (Q1) Find the real and imaginary components								
and the conjugate for the complex numbers:								
Z	Re(z)	Im(z)	Z					
-3 + 2i	-3	2	-3 - 2i					
$-\sqrt{2}i + 5$	5	$-\sqrt{2}$	$\sqrt{2i+5}$					
6	6	0	6					
-i	0	-1	i					
			y numbers to					
simplify the f			- 401					
$(Q2a) \sqrt{-49}$	= 71		-9 = -12i					
(Q2c) i ⁸⁷ 87 ÷ 4 = 211	·3 *Find	$(Q2d) 8i^2 $ = 8(-1)(6						
$: i^{87} = -i$	remainder	= 0(-1)(0) = -48i	()					
(Q3a) Plot th			nd diagram:					
a = 2 - i, b =		= -3 - 2 <i>i</i> , d	= -1 + i					
		•						
2		ā	b					
		a	Re					
С		ci	+					
	1							
(Q3b) Plot ā ā = 2 + i wh								
(Q3b) Plot ci								
ci = i(-3 - 2)								
otates c ant	i-clockwise	about the o	rigin.					
(Q3c) Plot 2								
2d = 2(-1 +			creases the					
modulus of a			lex numbers					
w = 2 - 3i a								
(Q4a) Simpli								
$2w + \bar{z} = 2(2)$ $\therefore 2w + \bar{z} = 3$	(2-3i) - 1	-4i = 4 - 6	5i — 1 — 4i					
(Q4b) Simpli wā = (2 ± 3i			$-3i - 12i^2$					
$w\bar{z} = (2 + 3i)$ $w\bar{z} = -2 - 1$	1i - 12(-1)	() = 10 - 11	- 31 - 121 i					
(Q4c) Simpli	fy the expre	ession i²w -	- iz:					
$i^2 w - iz = (-i^2 w - iz = -i^2 w - i^2 w$	-1)(2 - 3i)	-i(-1+4)	i)					
(Q4d) Simpli			z: er divided by					
			on where the					
numerat	or and deno	ominator are	e conjugate z:					
$\frac{w}{z} = \frac{w}{z} \times 1 =$	$\frac{w}{-} \times \frac{\overline{z}}{-} = \frac{2}{-}$	$\frac{-3i}{1} \times \frac{-1}{1}$	- 4i					
z z w (2-3i)	z z - i (-1 - 4i)	1 + 4i - 1 -2 - 8i	- 4i + 3i + 12i ²					
$\frac{1}{z} = \frac{1}{(-1+4)}$	i)(-1-4i)	$=\frac{-2-8i}{1+4i}$	4 <i>i</i> – 16 <i>i</i> ²					
$\frac{w}{z} = \frac{-14 - 5}{17 + 0i}$	$\frac{i}{i} = \frac{-14 - 14}{-14}$							
z = 17 + 0i	17	$\frac{1}{17} = -\frac{11}{17}$	17 w z					
(Q4e) Simpl	ity the expr	ression $y =$	$\frac{w}{1+i} + \frac{z}{1-i}$ and					
w w	z = 2 - 3	satisfies $Re($ 3i - 1 + 4i	y) = kIm(y):					
$y = \frac{w}{1+i} + \frac{w}{1+i}$	$\frac{1}{-i} = \frac{1}{1+i}$	$\frac{1}{i} + \frac{1}{1-i}$	Cross- multiply					
(1-i)(2	(2 - 3i) + (-3i)	(1+4i)(1+	i) fractions					
y — —	(1+i)(1	- i)						
$y = \frac{(2-3i-3i)}{2}$	$-2i + 3i^2) - 1 + i$	+(-1-i+)	$4l + 4l^2$					
1 - 2i +	$3i^2 + 4i^2$	-6 - 2i	a .					
$y = \frac{(1+i)(1-i)}{(1+i)(1-i)}$ matched $y = \frac{(2-3i-2i+3i^2) + (-1-i+4i+4i^2)}{1+i-i-i^2}$ $y = \frac{1-2i+3i^2+4i^2}{1+1} = \frac{-6-2i}{2} = -3-i$								
Hence, $Re(y) = -3$ and $Im(y) = -1$ $Re(y) = kIm(y) \rightarrow -3 = -1k \rightarrow k = 3$								
Re(y) = kIm	$(y) \rightarrow -3 =$	$= -1k \rightarrow k =$	= 3					
		lath Spe	ecialist					
ATAR Math Specialist								
J.	Units 1 & 2 Exam Notes							

Copyright © ReviseOnline 2020 Created by Anthony Bochrinis More resources at reviseonline.com

Page: 4 / 4 Version: 3.0